400=(0.1(x)^2+3(t))/x

Simple and best practice solution for 400=(0.1(x)^2+3(t))/x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 400=(0.1(x)^2+3(t))/x equation:


D( x )

x = 0

x = 0

x = 0

x in (-oo:0) U (0:+oo)

400 = (3*t+0.1*x^2)/x // - (3*t+0.1*x^2)/x

400-((3*t+0.1*x^2)/x) = 0

(-1*(3*t+0.1*x^2))/x+400 = 0

(-1*(3*t+0.1*x^2))/x+(400*x)/x = 0

400*x-1*(3*t+0.1*x^2) = 0

400*x-3*t-0.1*x^2 = 0

(400*x-3*t-0.1*x^2)/x = 0

(400*x-3*t-0.1*x^2)/x = 0 // * x

400*x-3*t-0.1*x^2 = 0

400*x-3*t-0.1*x^2 = 0

DELTA = 400^2-(-3*(-0.1)*4*t)

DELTA = 160000-1.2*t

160000-1.2*t = 0

160000-1.2*t = 0 // - 160000

-1.2*t = -160000 // : -1.2

t = -160000/(-1.2)

t = 133333.33333333

DELTA = 0 <=> t_3 = 133333.33333333

x = -400/(-0.1*2) i t = 133333.33333333

x = 2000 i t = 133333.33333333

( x = ((160000-1.2*t)^(1/2)-400)/(-0.1*2) or x = (-(160000-1.2*t)^(1/2)-400)/(-0.1*2) ) i t > 133333.33333333

( x = -5*((160000-1.2*t)^(1/2)-400) or x = 5*((160000-1.2*t)^(1/2)+400) ) i t > 133333.33333333

t-133333.33333333 > 0

t-133333.33333333 > 0 // + 133333.33333333

t > 133333.33333333

x in { 2000, -5*((160000-1.2*t)^(1/2)-400), 5*((160000-1.2*t)^(1/2)+400) }

See similar equations:

| -3+2/3r=13 | | 5x-4=-49 | | xy+y=12 | | 8x+3-2x-2=31 | | 3x^2+x-1/2=0 | | (3/4x)^2 | | 3.2x+45=6.4x-10.2 | | 3(x+8)-x=2x-17 | | x^2+(3/4x)^2-2704 | | 10x-3x+5=54 | | m-49=-25 | | 8x^2=14x-3 | | 17-4x=8x+17 | | x^3-12x^2+48x-68=0 | | x^2+(3/4)x^2=2704 | | 3/4/64 | | x+(x+5)=72 | | x^2+(3/4x)^2=2704 | | 1/5+1/63 | | x+x+5=72 | | 7x+14-3X=6 | | ((4x+2)/(4x-3))=((2x+6)/(2x-3)) | | 0=-2x(x+5)+3x | | (4x+2)/(4x-3)=(2x+6)/(2x-3) | | 3x+10-9x=19-13x+7x-9 | | 5[7-5(6-b)]-7=7[7-5(7b-6)+4]-50 | | M+3m=4m | | 4+6x=36 | | 2b^3-54= | | 1+6x=36 | | b=2l+w | | 9/5x=15 |

Equations solver categories